The increase in data storage and power consumption at data-centers has madeit imperative to design energy efficient Distributed Storage Systems (DSS). Theenergy efficiency of DSS is strongly influenced not only by the volume of data,frequency of data access and redundancy in data storage, but also by theheterogeneity exhibited by the DSS in these dimensions. To this end, we proposeand analyze the energy efficiency of a heterogeneous distributed storage systemin which $n$ storage servers (disks) store the data of $R$ distinct classes.Data of class $i$ is encoded using a $(n,k_{i})$ erasure code and the (random)data retrieval requests can also vary across classes. We show that the energyefficiency of such systems is closely related to the average latency and hencemotivates us to study the energy efficiency via the lens of average latency.Through this connection, we show that erasure coding serves the dual purpose ofreducing latency and increasing energy efficiency. We present a queuingtheoretic analysis of the proposed model and establish upper and lower boundson the average latency for each data class under various scheduling policies.Through extensive simulations, we present qualitative insights which reveal theimpact of coding rate, number of servers, service distribution and number ofredundant requests on the average latency and energy efficiency of the DSS.
展开▼
机译:数据中心数据存储和功耗的增加使得必须设计节能的分布式存储系统(DSS)。 DSS的能源效率不仅受到数据量,数据访问频率和数据存储冗余性的强烈影响,而且还受到DSS在这些方面表现出的异质性的强烈影响。为此,我们提出并分析了一种异构分布式存储系统的能效,其中$ n $个存储服务器(磁盘)存储$ R $个不同类的数据。$ i $类的数据使用$(n,k_ {i})$擦除代码和(随机)数据检索请求也可能因类而异。我们证明了此类系统的能效与平均等待时间密切相关,因此激励我们通过平均等待时间的镜头研究能源效率。通过这种联系,我们证明了擦除编码具有减少等待时间和提高能源效率的双重目的。我们对提出的模型进行排队理论分析,并在各种调度策略下确定每个数据类的平均延迟上限和下限。通过广泛的仿真,我们提出了定性见解,揭示了编码率,服务器数量,服务分配和数量的影响DSS的平均延迟和能效方面的冗余请求。
展开▼